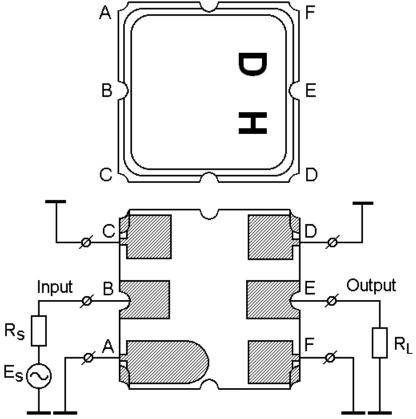


ПОЛОСОВОЙ ФИЛЬТР НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ (ПАВ)

ПОЛОСОВОЙ ФИЛЬТР НА ПАВ ФП-548 836В25 МГЦ

НАЗНАЧЕНИЕ:

- селекция сигналов в тракте Tx передачи несущих частот радиотелефонов стандарта AMPS.


ОСОБЕННОСТИ И ПРЕИМУЩЕСТВА:

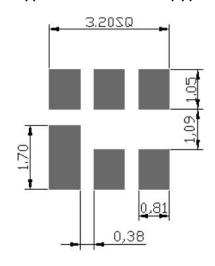
- избирательность более 50-55 дБ в широком диапазоне частот;
- высокая температурная стабильность TCF=-34 ppm/degr;
- широкий интервал рабочих температур от -50 °C до + 85 °C;
- планарные керамические корпуса SMD 3,0x3,0x1,4 мм для монтажа на поверхность.

1. Основные электрические параметры фильтра ФП-548 836В25 МГц при 20 ^ОС

Параметры	Ед.	Обозн.	Спецификация		Тип.
			Мин.	Макс.	ФП-548
Центральная частота	МГц	F ₀	835	837	836
Вносимые потери	дБ	IĽ	-	3,5	2,0
Полоса пропускания по уровню -1 дБ	МГц	BW1	25	-	25,0
Полоса пропускания по уровню -3 дБ	МГц	BW3	-	-	40,0
Полоса пропускания по уровню -30 дБ	МГц	BW30	-	70	60,8
Полоса пропускания по уровню -40 дБ	МГц	BW40	-	100	87
Неравномерность АЧХ в полосе частот $(F_0 \pm 12,5 \text{ M}\Gamma\text{ц})$	дБ	AR	-	2,0	1,5
Неравномерность ГВЗ в полосе частот $(F_0 \pm 12,5 \text{ M}\Gamma\text{ц})$	мкс	GDV	-	-	15
Неравномерность КСВ в полосе частот $(F_0 \pm 12,5 \text{ M}\Gamma\text{ц})$		SWR	-	2,3	1,75
Затухание в полосе 50-730 МГц	дБ	UR1	45	-	60
Затухание в полосе 900-1130 МГц	дБ	UR2	45	-	60
Затухание в полосе 1150-2050 МГц	дБ	UR3	35	1	40
Сопротивления генератора и нагрузки	Ом	R _S /R _L	50/50	50/50	50/50
Температурный коэффициент частоты	ppm/ °C	TCF	-	-	-34
Рабочая температура	°C		-40	+60	+20

2. Рекомендуемая схема включения фильтра ФП-548 836B25 МГц в корпусе SMD 3,0x3,0x1,4 мм, KD-V99D59-A, KYOCERA, Япония

2.1 Сопротивление генератора: $R_S = 50 \text{ Om}$.


2.2 Сопротивление нагрузки: $R_L = 50$ Ом.

2.3 Вход: (В); выход: (Е).

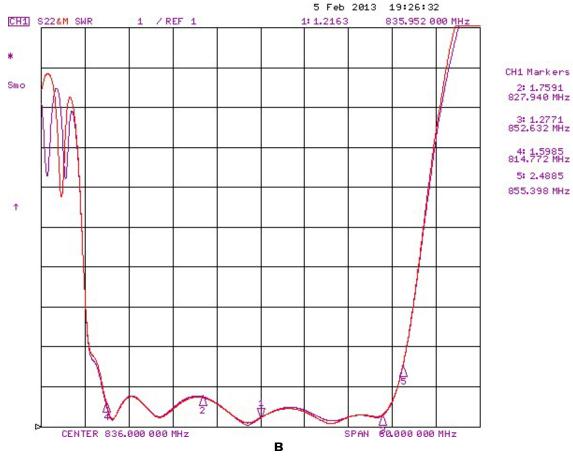
2.4 Особенности монтажа на плату:

Гарантированное затухание в широком интервале частот определяется не только избирательностью фильтра на ПАВ, но и электромагнитной наводкой со входа на выход в прижимном контактном устройстве Поставщика или в печатной плате Потребителя. Поэтому топология печатной платы должна обеспечивать уровень электромагнитной наводки не хуже - (65-70) дБ. Типичное улучшение затухания в полосах заграждения фильтра на печатной плате составляет от 3 до 6 дБ по сравнению с прижимным контактным устройством.

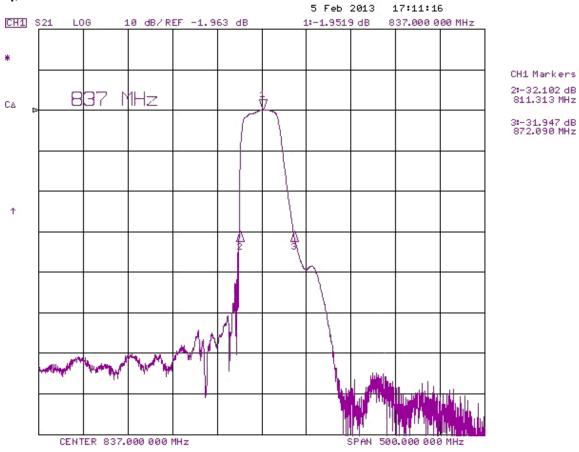
2.5 Рекомендуемый вид контактных площадок печатной платы

3. Измеренные частотные характеристики фильтра ФП-548 836B25 МГц |S21|, dB

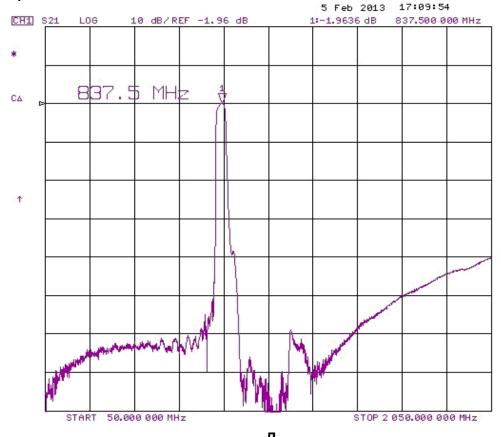
GDT, nsec


CH1 Markers
2: 34.116 ns
827.940 MHz
3: 45.514 ns
852.632 MHz
4: 110.28 ns
814.772 MHz
5: 50.227 ns
855.398 MHz

CH1 Markers 1:-2.1833 dB 835.958 MHz


2:-3.1980 dB 827.912 MHz

3:-3.1787 dB 852.566 MHz 4:-5.1935 dB 814.760 MHz


VSWR

|S21|, dB

|S21|, dB

Измеренные частотные характеристики фильтра ФП-548 836В25 МГц:

- а АЧХ и ГВЗ в полосе пропускания ($F_0 = 836 \text{ M}$ Гц; BW1 = 24 МГц; BW3 = 40,3 МГц IL=1,97 дБ; AR = 0,8 дБ и GDV = 15 нсек в полосе частот $F_0 \pm 12,5$ МГц) ;
- δ GDT в полосе пропускания (GDV = 12 нс в полосе частот $F_0 \pm 12,5$ МГц);
- в КСВН в полосе пропускания (SWR = 1,75 в полосе частот $F_0 \pm 12,5$ МГц);
- г IS21| в полосе частот 587 1087 МГц (BW30 = 60.8 МГц : UR = 53 дБ):
- д |S21| в полосе частот 50 2050 МГц (BW40 = 87,0 МГц; UR= 40-60 дБ)

Режим: 50/50 Ом без согласования в прижимном контактном устройстве.

SMD 3,0 x 3,0 x1,4 mm. Корпус:

Температурный коэффициент частоты :TKЧ= -34 ppm/°C.

Обозначения:

AR пульсации амплитуды;

BW1 полоса пропускания по уровню - 1 дБ; BW3 полоса пропускания по уровню - 3 дБ;

BW40 полоса пропускания по уровню - 40 дБ;

 F_0 средняя частота; GDV пульсации ГВЗ; IL вносимые потери;

UR гарантированное затухание в полосе заграждения.