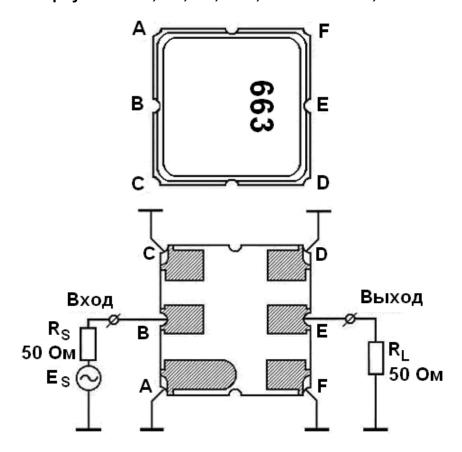


ПОЛОСОВОЙ ФИЛЬТР НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ (ПАВ)

ПОЛОСОВОЙ ФИЛЬТР НА ПАВ ФП-6017 1700В10 МГЦ

НАЗНАЧЕНИЕ: селекция сигналов в тракте промежуточных частот приемника систем связи и управления объектами.

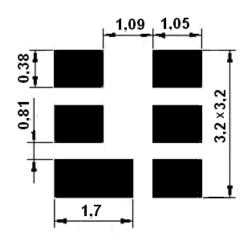

ОСОБЕННОСТИ И ПРЕИМУЩЕСТВА:

- малые вносимые потери 4,5-5,5 дБ;
- избирательность более 40-50 дБ в широком диапазоне частот;
- высокая температурная стабильность ТКЧ =- 36 ppm/°C;
- широкий интервал рабочих температур от 60 °C до + 85 °C;
- отсутствие цепей согласования с 50- омным трактом ;
- планарные керамические корпуса для монтажа на поверхность.

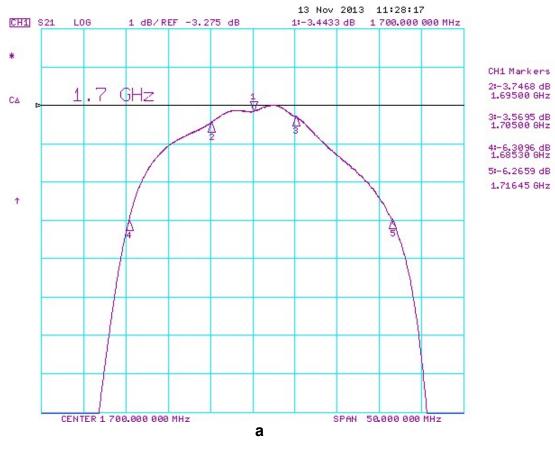
1. Основные электрические параметры фильтра $\Phi\Pi$ -6017 1700В10 МГц при 20 $^{\circ}$ С

Параметр	Ед.	Обозн.	Спецификация		Тип. ФП-6017
			Мин.	Макс.	411-0017
Номинальная частота	МГц	F_0	1698,0	1702,0	1700,0
Вносимые потери	дБ	IL	-	4,0	3,3
Полоса пропускания по уровню –1 дБ	МГц	BW1	10,0	-	17,5,0
Полоса пропускания по уровню –3 дБ	МГц	BW3	25,0	-	31,0
Неравномерность АЧХ в полосе	дБ	AR	-	1,0	0,5
$F_0 \pm 5 M\Gamma$ ц					
Неравномерность ГВЗ в полосе	нс	GDV	-	15,0	8,0
$F_0 \pm 5 M\Gamma$ ц					
КСВН по входу и выходу в полосе		SWR		2,0	1,6
$F_0 \pm 5 M\Gamma$ ц					
Полоса пропускания по уровню –40 дБ	МГц	BW40	-	80,0	68,0
Относительное затухание в диапазоне					
частот:					
от 50 МГц до 1640 МГц	дБ	UR	40	-	60-50
от 1760 МГц до 3000 МГц			40	-	50-47
Сопротивления нагрузки и генератора	Ом	RL/Rs	45	55	50
Температурный коэффициент частоты	ТКЧ	ppm/grad	-	-38	-34
Рабочая температура	Т	°C	-60	+85	+20

2. Рекомендуемая схема включения фильтра ФП- 6017 1700В10 МГц в корпусе SMD 3,0x3,0x1,4 мм, KD-V99D59-A, Япония

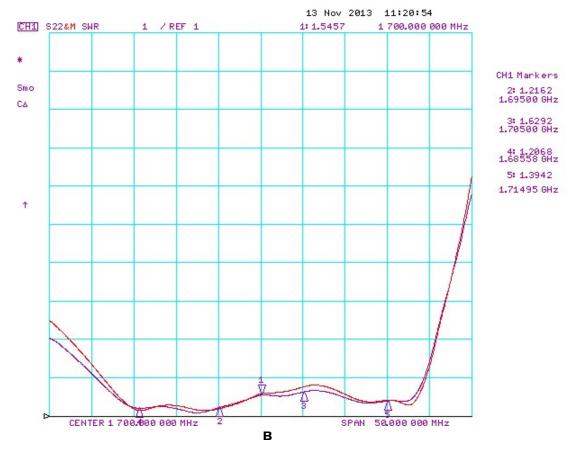

2.1 Сопротивление генератора: $R_S = 50$ Ом. 2.2 Сопротивление нагрузки: $R_L = 50$ Ом.

2.3 Вход: (В); выход: (Е).

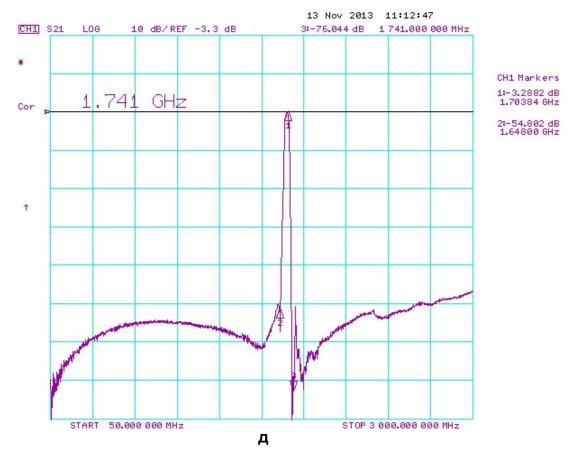

2.4 Особенности монтажа на плату:

Гарантированное затухание в широком интервале частот определяется не только избирательностью фильтра на ПАВ, но и электромагнитной наводкой со входа на выход в прижимном контактном устройстве Поставщика или в печатной плате Потребителя. Поэтому топология печатной платы должна обеспечивать уровень электромагнитной наводки не хуже - (65-70) дБ. Типичное улучшение затухания в полосах заграждения фильтра на печатной плате составляет от 5 до 10 дБ по сравнению с прижимным контактным устройством.


2.5 Рекомендуемый вид контактных площадок печатной платы


3. Измеренные частотные характеристики фильтра ФП-6017 1700В10 МГц |S21|, dB

GDT, nsec



|S21|, dB

Измеренные частотные характеристики фильтра ФП-6017 1700В10 МГц:

а - |S21| в полосе пропускания (F_0 = 1700 МГц ; IL=3,3 дБ; BW1 = 17,5 МГц; BW3 = 31 МГц , AR=0,5 дБ в полосе F_0 \pm 5 МГц);

б - неравномерность ГВЗ в полосе пропускания (GDV = 8,0 нс в полосе $F_0 \pm 5$ МГц);

в - КСВН в полосе пропускания (SWR = 1,7 в полосе $F_0 \pm 5$ МГц);

г - |S21| в полосе частот 1600 – 1800 МГц (BW40 = 68 МГц ; UR=50 дБ);

д -|S21| в полосе частот 50 - 3000 МГц (UR=45-55 дБ)

Режим: 50/50 Ом без согласования в прижимном контактном устройстве.

Корпус: SMD 3,0 x 3,0 x 1,4 мм.

Температурный коэффициент частоты ТКЧ= -34 ppm/°C.

Обозначения:

AR - пульсации амплитуды;

BW1 - полоса пропускания по уровню - 1 дБ;

 ${\sf F}_0$ - центральная частота;

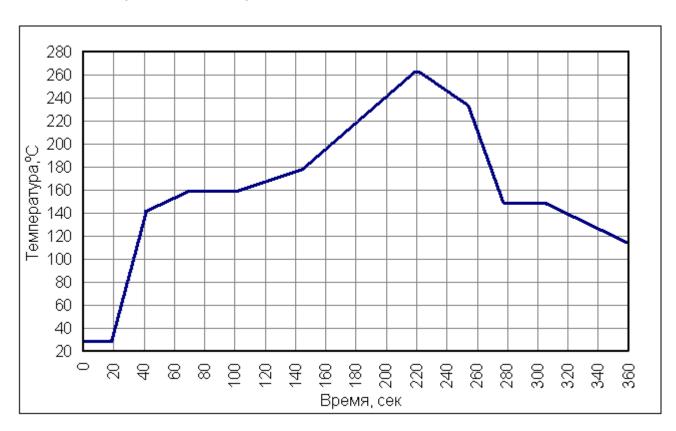
SWR - коэффициент стоячей волны на номинальной частоте;

GDT - групповое время запаздывания;

GDV - неравномерность группового времени запаздывания ;

IL - вносимые потери;

UR - гарантированное затухание.


5.Особенности монтажа

- **5.1.**При хранении , монтаже и эксплуатации изделия необходимо предпринять меры по защите от **статического электричества**. Ручную пайку следует выполнять с браслетом, заземленным через сопротивление 1 МОм.
- **5.2.** Изделие выполнено на **пироэлектрическом материале** .

Допустимая скорость охлаждения и нагрева изделия **при хранении и эксплуатации** должна быть не более 60°C в минуту.

При ручном монтаже изделие следует сначала подогреть до температуры 120-140 0 C в течение 2,0-2,5 минут. Далее следует разогреть изделие до температуры плавления припоя 230-240 0 C с допустимой скоростью не более 70 $^{\circ}$ C в минуту. Время пайки при максимально допустимой температуре 240 0 C — не более 5 сек. Перерывы между пайкой контактных площадок корпуса - не менее 10 секунд. Максимальная температура жала паяльника — не более 290-300 0 C.

5.3. Рекомендуемый температурный режим при автоматизированной пайке

Все температуры относятся к верхней части корпуса и измеряются на крышке корпуса.