

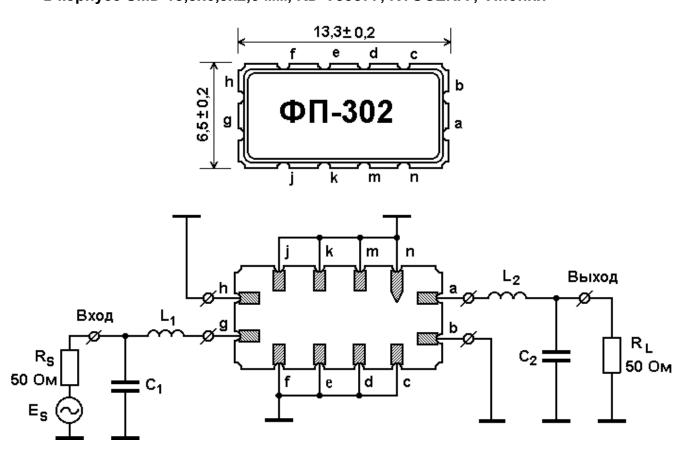
ПОЛОСОВОЙ ФИЛЬТР НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ (ПАВ)

ПОЛОСОВОЙ ФИЛЬТР НА ПАВ ФП-302 166В1,0 МГЦ

НАЗНАЧЕНИЕ:

- селекция сигналов в трактах промежуточных частот систем связи.

ОСОБЕННОСТИ И ПРЕИМУЩЕСТВА:


- избирательность более 50-65 дБ в широком диапазоне частот;
- высокая температурная стабильность TCF =- $0.036 \text{ ppm}/^{0}\text{C}^{2}$;
- широкий интервал рабочих температур от 60 ^OC до + 85 ^OC;
- планарные керамические корпуса SMD13,3x6,5x2,0 мм для монтажа на поверхность.

1.Основные электрические параметры фильтра ФП-302 166В01,0 МГц при 20 ^ОС

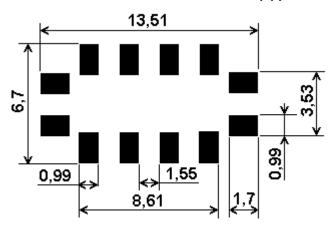
Электрические параметры					
Параметры	Ед.	Обозн.	Спецификация		Тип.
			Мин.	Макс.	ФП-302
Центральная частота	МГц	F ₀	165,95	166,05	166,0
Вносимые потери	дБ	IL	-	8,0	6,2
Полоса пропускания по уровню -1,5 дБ	МГц	BW1,5	0,6	-	0,8
Полоса пропускания по уровню -3 дБ	МГц	BW3	0,9	•	1,0
Полоса пропускания по уровню -40 дБ	МГц	BW40	-	3,8	3,45
Неравномерность АЧХ в полосе частот F ₀	дБ	AR	-	1,0	0,6
± 0,25 МГц)					
Нелинейность ФЧХ в полосе частот	град	Phase	-	5,0	5,0
$F_0 \pm 0,25 M\Gamma$ ц					
Неравномерность ГВЗ в полосе частот F ₀	нсек	GDV	-	150	80
± 0,25 МГц					
Время задержки	мксек		-	1,9	1,8
Затухание в полосах заграждения:	дБ				
- от 10,0 МГц до 163,5 МГц		UR1	40	-	70-50
- от 168,5 МГц до 110 МГц		UR2	40	-	48-70
Интервал рабочих температур	°C		-55	+85	+20
Сопротивления генератора и нагрузки	Ом	R_S/R_L	50/50	50/50	50/50
Температурный коэффициент частоты	ppm/ ⁰ C ²	TCF	-	- 0,06	-0,036

При выборе фильтра, обеспечивающего полосу пропускания, гарантированную в требуемом интервале температур, следует учитывать минимальный технологический разброс частот около MF=(+/-0,01%) Fc при изготовлении и температурные смещения частот $TF=Fc \times TCF \times (Ti \, ^0C-20 \, ^0C)$, где Fc —граничные частоты полосы пропускания, $M\Gamma \downarrow 1$, TCF- температурный коэффициент частоты , $ppm/^0C^2$, Ti — граничные температуры требуемого интервала, 0C .

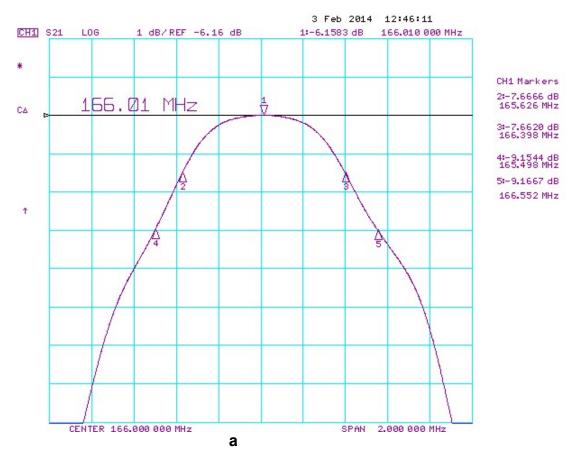
2. Рекомендуемая схема включения фильтра ФП-302 166B01,0 МГц в корпусе SMD 13,3x6,5x2,0 мм, KD-V99377, KYOCERA, Япония

2.1 Сопротивления нагрузок и согласующие цепи :

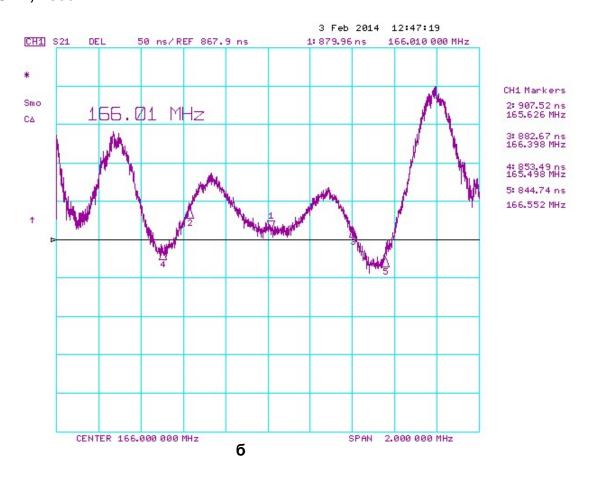
 $R_S=R_L=50~OM$. $L_1=80~H\Gamma H$, Q=60, $C_1=21~\Pi\Phi$; $L_2=80~H\Gamma H$, Q=60, $C_2=27~\Pi\Phi$.

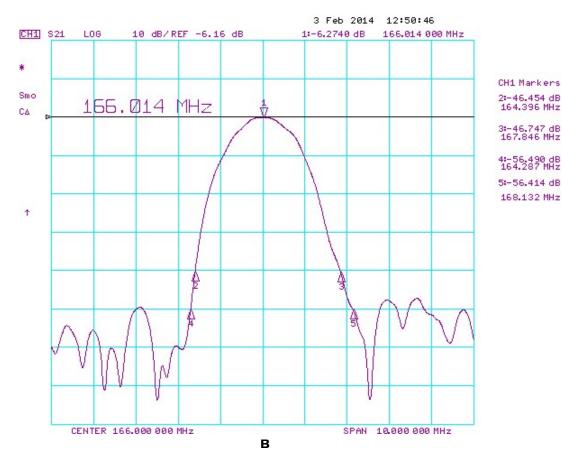

2.2 Вход: (g); выход: (a).

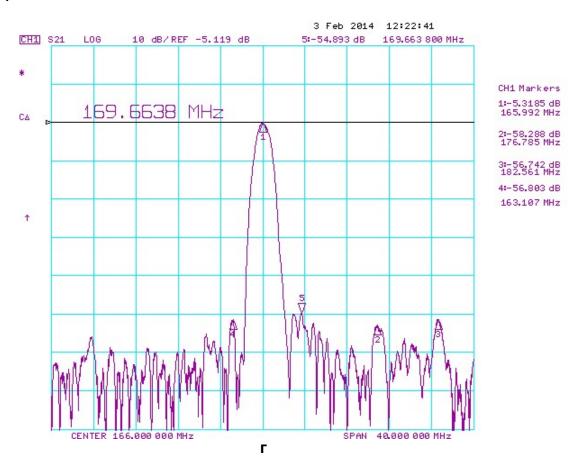
2.3. Особенности монтажа

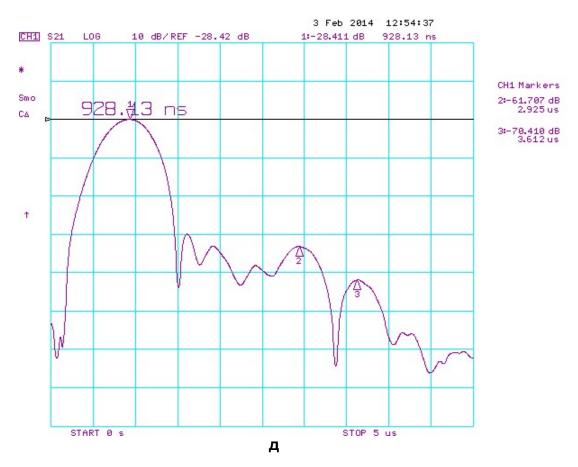

Конкретные номиналы LC-элементов согласующих цепей зависят от паразитных емкостей и индуктивностей в измерительном устройстве Поставщика или в печатной плате аппаратуры Заказчика. Дискретные значения номиналов элементов цепей подбираются при регулировке фильтра в аппаратуре Заказчика.

2.4. Гарантированное затухание в широком интервале частот определяется не только избирательностью фильтра на ПАВ, но и электромагнитной наводкой со входа на выход в печатной плате потребителя. Поэтому топология печатной платы должна обеспечивать уровень электромагнитной наводки не хуже -(65-70) дБ.


2.5. Рекомендуемая топология контактных площадок печатной платы


3. Измеренные частотные характеристики фильтра ФП-302 166В01,0 МГц |S21|, dB


GDT, nsec


|S21|, dB

|S21|, dB

Impulse, dB

Измеренные частотные характеристики фильтра ФП-302 166В01,0 МГц:

- а |S21| в полосе пропускания (F_0 = 166 МГц; BW1,5 = 0,8 МГц; BW3 = 1,05 МГц; IL=6,2 дБ; AR = 0,5 дБ в полосе частот $F_0 \pm 0,25$ МГц ;
- б ГВЗ в полосе пропускания (GDV = 70 нсек в полосе частот $F_0 \pm 0.25~\text{M}$ Гц);
- в |S21| в полосе частот 161 171 МГц (BW40 = 3,45 МГц; UR=48-40 дБ);
- г |S21| в полосе частот 146 186 МГц (UR=50-55 дБ);
- д импульсная характеристика (EMS=-55 дБ; TTS=-32 дБ)

Режим: 50/50 Ом с согласующими цепями $L_1C_1 + L_2C_2$ в прижимном контактном устройстве.

Корпус: SMD $13,3 \times 6,5 \times 2,0 \text{ мм}$.

Температурный коэффициент частоты $TKY = -0.036 \text{ ppm}/^{0}C^{2}$.

Обозначения:

AR - пульсации амплитуды;

ВW1 - полоса пропускания по уровню – 1,5 дБ; ВW3 - полоса пропускания по уровню - 3 дБ; ВW40 - полоса пропускания по уровню - 40 дБ; EMS – уровень электромагнитного сигнала;

F₀ - средняя частота; GDV - пульсации ГВЗ; IL - вносимые потери;

TTS – уровень сигнала тройного прохождения ;

UR - гарантированное затухание в полосе заграждения.