

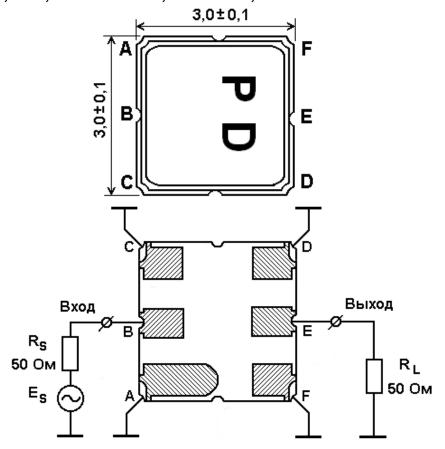
ПОЛОСОВОЙ ФИЛЬТР НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ (ПАВ)

ПОЛОСОВОЙ ФИЛЬТР НА ПАВ ФП-555 1212В48 МГЦ

НАЗНАЧЕНИЕ:

- охватывающий фильтр для селекции сигналов во входных трактах приемников совмещенных навигационных систем ГЛОНАСС L3-GPS L2.

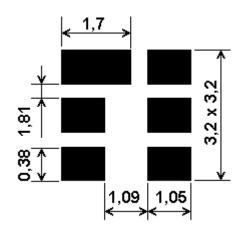
ОСОБЕННОСТИ И ПРЕИМУЩЕСТВА:

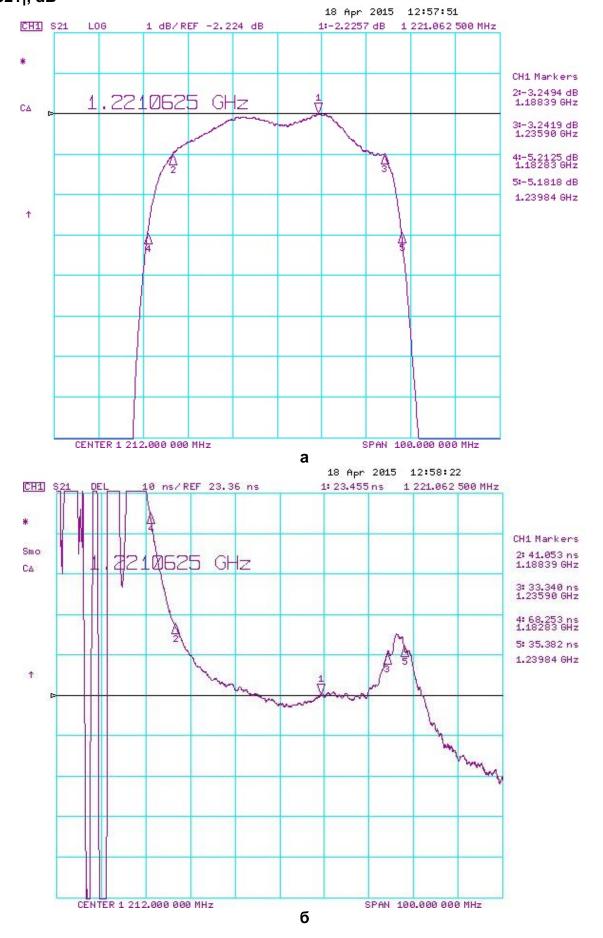

- малые вносимые потери менее 2,5 дБ;
- малые пульсации группового времени запаздывания менее 8,0 нсек;
- избирательность более 50-55 дБ в широком диапазоне частот;
- в качестве материала подложки используется танталат лития, что гарантирует высокую температурную стабильность ТКЧ =- 36 ppm/°C;
- широкий интервал рабочих температур от -60° C до + 85° C;
- отсутствие цепей согласования с 50- омным трактом ;
- планарные керамические корпуса SMD 3,0x3,0x1,4 мм.

1. Основные электрические параметры фильтра ФП-555 1212В48 М Γ ц при 20 $^{ m O}$ С

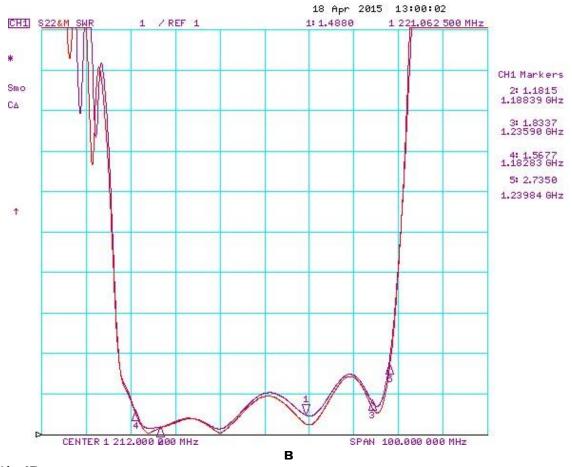
Параметры	Е д.	Обозн.	Спецификация		Тип.
			Мин.	Макс.	ФП-555
Номинальная частота	МГц	F_{\scriptscriptstyleH}	1212,0		1212,0
Вносимые потери	дБ	ᆜ	-	2,5	2,3
Полоса пропускания по уровню -1,5 дБ	МГц	BW1,5	48,0	-	52,0
Нижняя граничная частота полосы пропускания по уровню -1,5 дБ	МГц	F _{1,5}		1191,0	1186,0
Верхняя граничная частота полосы пропускания по уровню -1,5 дБ	МГц	F _{1,5}	1234,0		1238,0
Неравномерность АЧХ в полосе пропускания 1191-1234 МГц	дБ	AR	-	1,5	1,1
Неравномерность ГВЗ в полосе пропускания 1191-1234 МГц	нсек	GDV	-	22	18
КСВ в полосе пропускания 1191-1234 МГц		SWR	-	2,8	2,5
Относительное затухание в диапазоне частот: от 50 МГц до 1150 МГц от 1320 МГц до 2500 МГц	дБ	UR	45 40	-	50 48
Сопротивления генератора и нагрузки	Ом	R _S /R _L	50/50	50/50	50/50
Температурный коэффициент частоты	ppm/ °C	TCF	-	- 45	-36

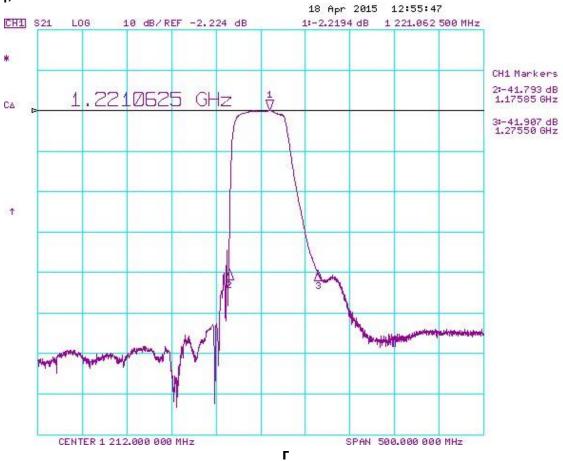
При выборе фильтра, обеспечивающего требуемую полосу пропускания в заданном интервале температур, следует учитывать минимальный технологический разброс частот около MF=(+/-0,01%) Fc при изготовлении и температурные смещения частот $TF=Fc \times TCF \times (Ti\ ^0C-20\ ^0C)$, где Fc—граничные частоты полосы пропускания, $M\Gamma$ ц, TCF- температурный коэффициент частоты, $ppm/^0C$, Ti— граничные температуры заданного интервала, 0C .

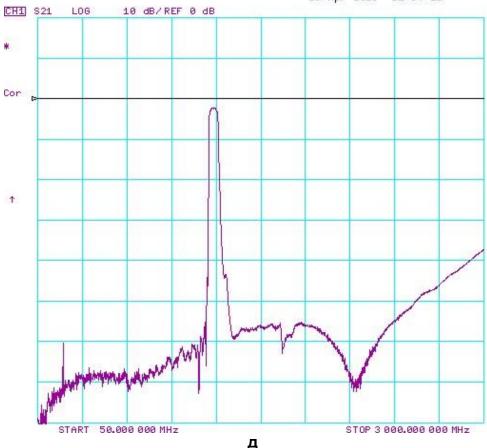

2. Рекомендуемая схема включения фильтра ФП-555 1212B48 МГц в корпусе SMD 3,0x3,0x1,4 мм, KD-V99D59-A, KYOCERA, Япония


- 2.1 Сопротивление генератора: R_S = 50 Ом.
- 2.2 Сопротивление нагрузки: $R_L = 50$ Ом.
- 2.3 Вход: (В); выход: (Е).
- 2.4 Особенности монтажа на плату:

Гарантированное затухание в широком интервале частот определяется не только избирательностью фильтра на ПАВ, но и электромагнитной наводкой со входа на выход в прижимном контактном устройстве Поставщика или в печатной плате Потребителя. Поэтому топология печатной платы должна обеспечивать уровень электромагнитной наводки не хуже -(65-70) дБ. Типичное улучшение затухания в полосах заграждения фильтра на печатной плате составляет от 3 до 8 дБ по сравнению с прижимным контактным устройством.


2.5 Рекомендуемый вид контактных площадок печатной платы


3.Измеренные частотные характеристики фильтра ФП-555 1212В48 МГц |S21|, dB



SWR

|S21|, dB

Измеренные частотные характеристики фильтра ФП-555 1212В48 МГц:

- а |S21| в полосе пропускания (F_0 = 1212 МГц ; IL=2,2 дБ; BW1 = 48 МГц; BW3 = 57 МГц ; AR=0,9 дБ в полосе 1191-1234 МГц);
- б- ГВЗ в полосе пропускания (пульсации GDT= 19 нс в полосе 1191-1234 МГц);
- в- КСВ полосе пропускания (SWR= 2,5 в полосе 1191-1234 МГц);
- г |S21| в полосе частот 1062 1362 МГц (BW40 = 110 МГц; UR=55-58 дБ);
- д |S21| в полосе частот 50-3000 МГц (UR=65-55 дБ в диапазоне до 2500 МГц)

Режим: 50/50 Ом без согласования.

Корпус: SMD 3,0 x 3,0 x 1,4 мм.

Температурный коэффициент частоты ТКЧ= -36 ppm/°C.

Обозначения:

AR - пульсации амплитуды;

BW1 - полоса пропускания по уровню - 1 дБ;

BW3 - полоса пропускания по уровню - 3 дБ;

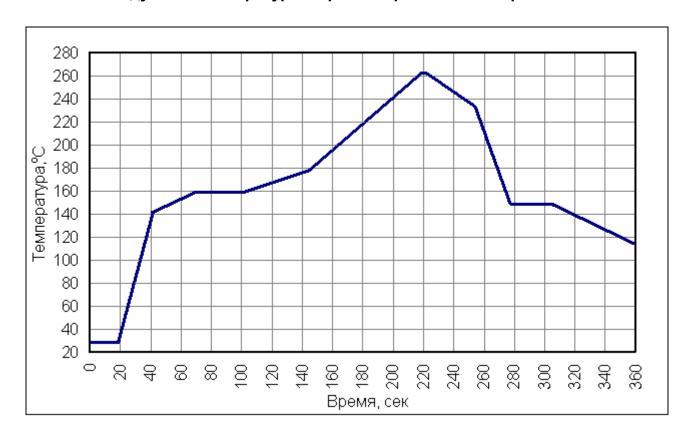
BW40 - полоса пропускания по уровню - 40 дБ;

F₀ - средняя частота;

GDV - пульсации ГВЗ;

IL - вносимые потери;

UR - гарантированное затухание в полосе заграждения;


SWR – коэффициенты стоячей волны по входу или по выходу

4 Особенности монтажа

- **4.1** При хранении , монтаже и эксплуатации изделия необходимо предпринять меры по защите от **статического электричества**. Ручную пайку следует выполнять с браслетом, заземленным через сопротивление 1 МОм.
- **4.2** Изделие выполнено на **пироэлектрическом материале**. Допустимая скорость охлаждения и нагрева изделия **при хранении и эксплуатации** должна быть не более 60°C в минуту.

При ручном монтаже изделие следует сначала подогреть до температуры 120-140 °C в течение 2,0-2,5 минут. Далее следует разогреть изделие до температуры плавления припоя 230-240 °C с допустимой скоростью не более 60°C в минуту. Время пайки при максимально допустимой температуре 260 °C – не более 5 сек. Перерывы между пайкой контактных площадок корпуса - не менее 10 секунд. Максимальная температура жала паяльника – не более 290-300 °C.

4.3 Рекомендуемый температурный режим при автоматизированной пайке

Все температуры относятся к верхней части корпуса и измеряются на крышке