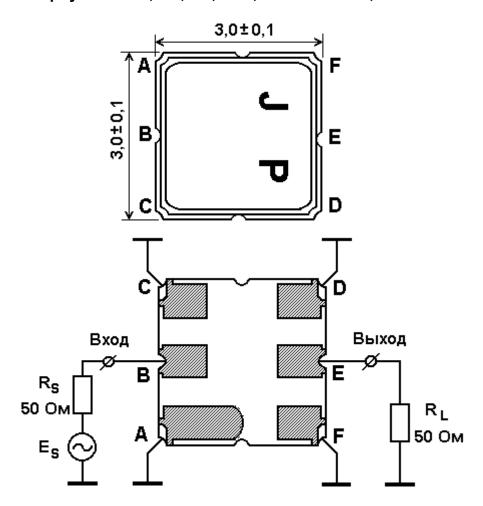


ПОЛОСОВОЙ ФИЛЬТР НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ (ПАВ)

ПОЛОСОВОЙ ФИЛЬТР НА ПАВ ФП-6035 1900В40 МГЦ

НАЗНАЧЕНИЕ: селекция сигналов в приемных трактах систем связи. ОСОБЕННОСТИ И ПРЕИМУЩЕСТВА:


- малые вносимые потери 2,3-2,8 дБ;
- малая неравномерность ГВЗ 8- 10 нсек в рабочем диапазоне частот;
- высокая температурная стабильность ТКЧ= -36 ppm/°C;
- широкий интервал рабочих температур от 60 °C до + 85 °C;
- отсутствие цепей согласования с 50- омным трактом;
- миниатюрные керамические корпуса SMD 3,0x3,0x1,4 мм для монтажа на поверхность печатной платы;
- высокая стойкость к внешним механическим и климатическим воздействиям.

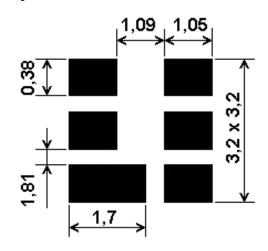
1. Основные электрические параметры фильтра ФП-6035 1900В40 МГц при 20 °C

Параметры	Ед.	Обозн.	Спецификация		Тип.
			Мин.	Макс.	ФП-6035
Центральная частота	МГц	F ₀	1898,0	1902,0	1900,0
Вносимые потери	дБ	⊒	-	2,5	1,6
Полоса пропускания по уровню -1 дБ	МГц	BW1	40	•	44,9
Полоса пропускания по уровню -3 дБ	МГц	BW3	55	-	65,4
Полоса пропускания по уровню -30 дБ	МГц	BW30	-	120,0	102,0
Неравномерность АЧХ в полосе частот $(F_0 \pm 15 \text{ M}\Gamma\text{ц})$	дБ	AR	-	1,0	0,7
Неравномерность ГВЗ в полосе частот $(F_0 \pm 15 \text{ M}\Gamma\text{ц})$	нсек	GDV	-	15,0	7,0
КСВ в полосе частот ($F_0 \pm 15 \ M\Gamma$ ц)		SWR	-	2,5	1,95
Затухание в полосе заграждения : -от 50 МГц до 1825 МГц -от 1975 МГц до 2500 МГц	дБ дБ	UR1 UR2	30 30	-	40-35 37-40
Сопротивления генератора и нагрузки	Ом	R _S /R _L	50/50	50/50	50/50
Интервал рабочих температур	°C		-60	+85	+20
Температурный коэффициент частоты	°C	TCF	-	-	-36

При выборе фильтра, обеспечивающего полосу пропускания, гарантированную в требуемом интервале температур, следует учитывать минимальный технологический разброс частот около MF=(+/-0,01%) Fc при изготовлении и температурные смещения частот $TF=Fc \times TCF \times (Ti \, ^0C-20 \, ^0C)$, где Fc —граничные частоты полосы пропускания, $M\Gamma$ ц, TCF- температурный коэффициент частоты, $ppm/^0C$, Ti — граничные температуры требуемого интервала, 0C .

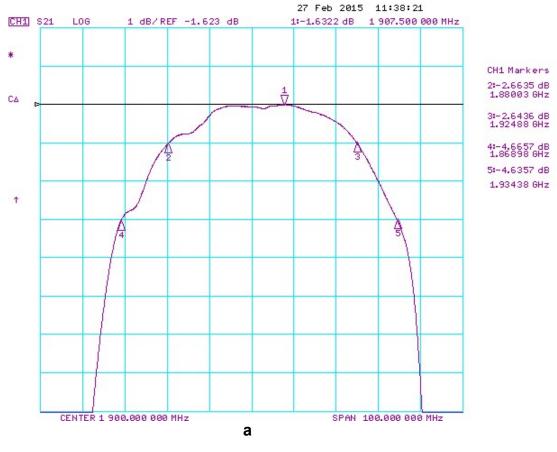
2. Рекомендуемая схема включения фильтра ФП-6035 1900В40 МГц в корпусе SMD 3,0x3,0x1,4 мм, KD-V99D59-A , Япония

2.1 Сопротивление генератора: R_S= 50 Ом.

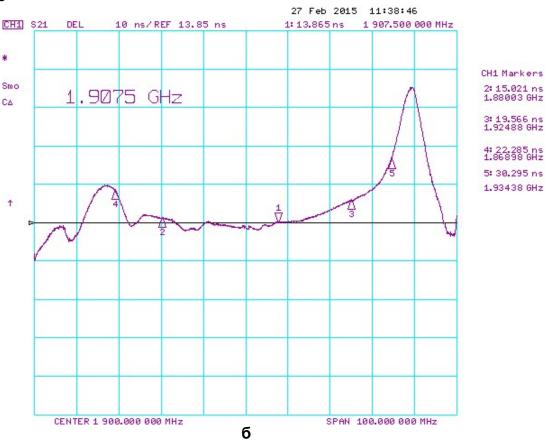

2.2 Сопротивление нагрузки: R_L= 50 Ом.

2.3 Вход: (В); выход: (Е).

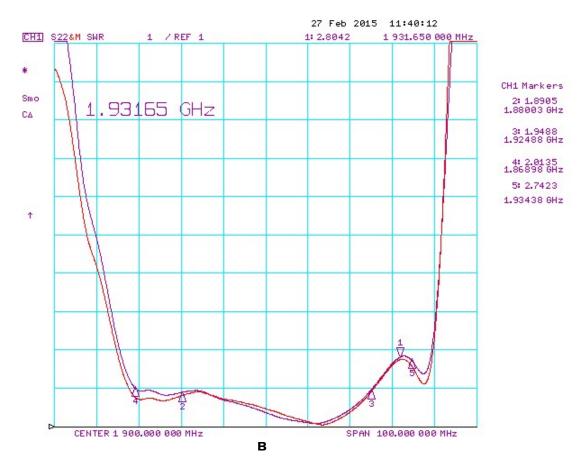
2.4 Особенности монтажа:

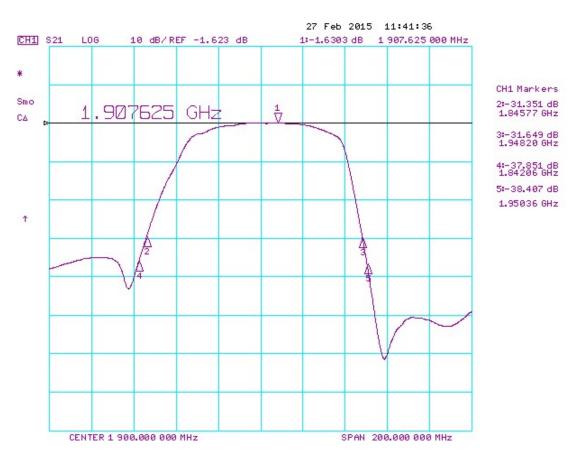

Гарантированное затухание в широком интервале частот определяется не только избирательностью фильтра на ПАВ, но и электромагнитной наводкой со входа на выход в контактном устройстве или в печатной плате потребителя. Поэтому топология печатной платы должна обеспечивать уровень электромагнитной наводки не хуже -(65-70) дБ.

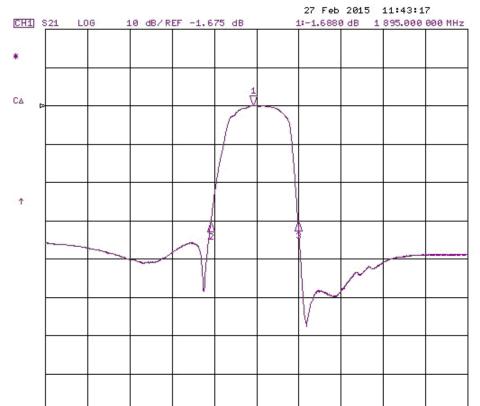
2.5 Рекомендуемый вид контактных площадок печатной платы



3.Измеренные частотные характеристики фильтра ФП-5034 1200В40 МГц

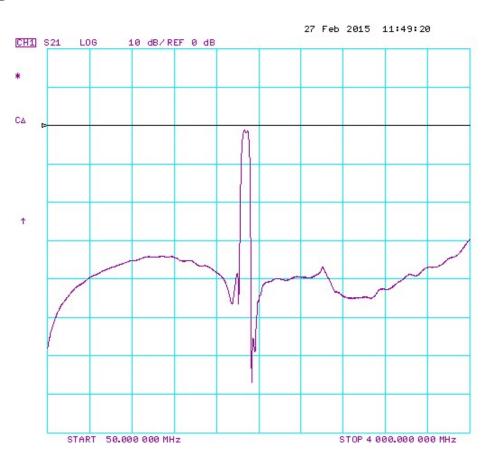



GDT, nsec


SWR

|S21|, dB

|S21|, dB


CH1 Markers 2:-32.184 dB 1.84540 GHz

Д

SPAN 500.000 000 MHz

CENTER 1 900.000 000 MHz

|S21|, dB

Измеренные частотные характеристики фильтра ФП6035 1900В40 МГц:

- а |S21| в полосе пропускания (F_0 =1900 МГц; IL=1,63 дБ; BW1=44,9 МГц; BW3=65,4 МГц; AR=0,7 дБ в полосе частот $F_0 \pm 15$ МГц);
- б неравномерность ГВЗ в полосе пропускания (GDV=7 нс в полосе частот $F_0 \pm 15$ МГц);
- в КСВН в полосе пропускания (VSWR=1,95 в полосе частот $F_0 \pm 15$ МГц);
- г |S21| в полосе частот 1800-2000 МГц (BW30=102 МГц; BW35=108 МГц; UR=35-50 дБ);
- д |S21| в полосе частот 1650 2150 МГц (BW30=102 МГц UR=35-38 дБ);
- e |S21| в полосе частот 50 5000 МГц (UR=65-30 дБ)

Режим: 50/50 Ом без согласования в прижимном контактном устройстве.

Корпус: SMD 3,0x3,0x1,4 мм.

Температурный коэффициент частоты: TKЧ= -36 ppm/°C.

Обозначения:

AR - неравномерность амплитуды в полосе пропускания;

BW1 - полоса пропускания по уровню – 1 дБ;

BW1,5 - полоса пропускания по уровню – 1,5 дБ;

BW40 - полоса пропускания по уровню – 40 дБ;

F₀ - номинальная частота;

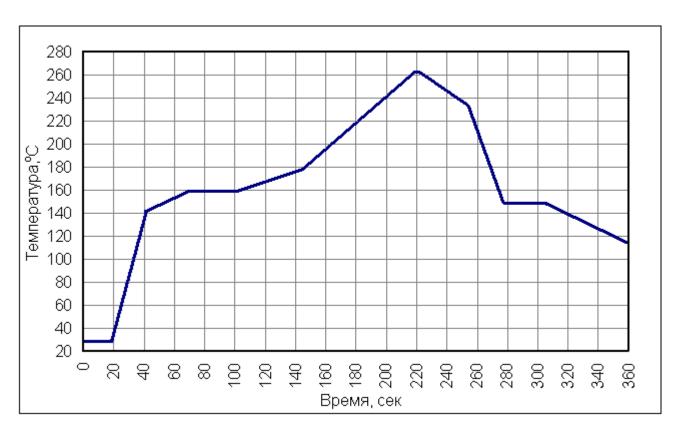
GDT - групповое время запаздывания (ГВЗ);

GDV - неравномерность ГВЗ в полосе пропускания;

IL - вносимые потери;

IS21I - амплитудно-частотная характеристика;

SWR - коэффициент стоячей волны;


UR - гарантированное затухание в полосе заграждения.

4 Особенности монтажа

- 4.1 При хранении, монтаже и эксплуатации изделия необходимо предпринять меры по защите от статического электричества. Ручную пайку следует выполнять с браслетом, заземленным через сопротивление 1 МОм.
- 4.2 Изделие выполнено на пироэлектрическом материале. Допустимая скорость охлаждения и нагрева изделия при хранении и эксплуатации должна быть не более 60°С в минуту.

При ручном монтаже изделие следует сначала подогреть до температуры 120-140 ⁰С в течение 2,0-2,5 минут. Далее следует разогреть изделие до температуры плавления припоя 230-240 °C с допустимой скоростью не более 70°C в минуту. Время пайки при максимально допустимой температуре 240 °C – не более 5 сек. Перерывы между пайкой контактных площадок корпуса - не менее 10 секунд. Максимальная температура жала паяльника – не более 290-300 °C.

4.3 Рекомендуемый температурный режим при автоматизированной пайке

Все температуры относятся к верхней части корпуса и измеряются на крышке корпуса.