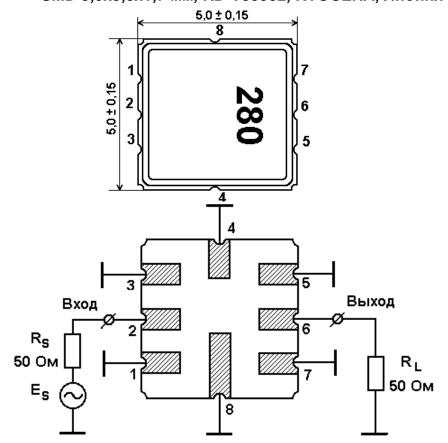


ПОЛОСОВОЙ ФИЛЬТР НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ (ПАВ)

ПОЛОСОВОЙ ФИЛЬТР на ПАВ ФП-715 868,3В1,2 МГц

НАЗНАЧЕНИЕ: системы радиоуправления объектами.

ОСОБЕННОСТИ И ПРЕИМУЩЕСТВА:


- малые вносимые потери на СВЧ;
- широкая относительная полоса пропускания , близкая к предельно возможной для кварцевых фильтров с поперечной акустической связью резонаторов;
- в качестве материала подложки используется кварц, что гарантирует высокую температурную стабильность TKЧ =- 0,036 ppm/°C²;
- широкий интервал рабочих температур от 65 °C до + 85 °C;
- планарные керамические корпуса SMD 5,0x5,0 мм для монтажа на поверхность.

1. Основные электрические параметры фильтра ФП-715 868,3В1,2 МГц при 20 ^ОС

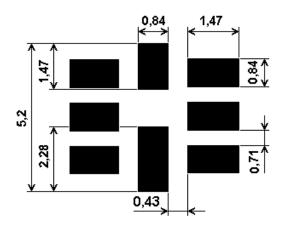
Параметр	Ед.	Обозн.	Спецификация		Тип.
			Мин.	Макс.	тип. ФП-715
Номинальная частота фильтра	МГц	F ₀	868,1	868,5	868,3
Вносимые потери на номинальной частоте	дБ	IL	-	10,0	3,6-4,5
Полоса пропускания по уровню –1 дБ	МГц	BW1	0,8	-	1,3
Полоса пропускания по уровню –3 дБ			1,2	-	2,0
Неравномерность АЧХ в полосе $F_0 \pm 0$, 3 МГц	дБ	AR	-	1,0	0,5
Неравномерность ГВЗ в полосе $F_0 \pm 0$, 3 МГц	НС	GDV	-	150	75
КСВН в полосе $F_0 \pm 0$, 3 МГц		SWR	-	2,5	1,8
Полоса пропускания по уровню –30 дБ	МГц	BW30	-	8,0	6,1
Относительное затухание в диапазоне					
частот:			-		
-от 50 до 858 МГц	дБ	UR1	30	-	70-35
-от 883 до 1600 МГц		UR2	30	-	60-35
Сопротивления нагрузки и генератора	Ом	R _L /R _s	48	52	50
Температурный коэффициент частоты	ТКЧ	ppm / °C²	-	-0,04	-0,036
Рабочая температура	Т	°C	-60°C	+85°C	+20°C

При выборе фильтра, обеспечивающего полосу пропускания, гарантированную в требуемом интервале температур, следует учитывать минимальный технологический разброс частот около MF=(+/-0.01%) Fc при изготовлении и температурные смещения частот $TF=Fc \times TCF \times (Ti \, ^0C-20^0C)$, где Fc —граничные частоты полосы пропускания, МГц, TCF- температурный коэффициент частоты, $ppm/^0C^2$, Ti — граничные температуры требуемого интервала, 0C .

2. Рекомендуемая схема включения фильтра ФП-715 868,3B1,2 МГц в корпусе SMD 5,0x5,0x1,7 мм, KD-V99902, KYOCERA, Япония

2.1 Сопротивления нагрузок и согласующие цепи :

 $R_S=R_L=50~OM$. $L_1=15~H\Gamma H$, Q=60, $C_1=3,3~\Pi\Phi$; $L_2=15~H\Gamma H$, Q=60, $C_2=3,3~\Pi\Phi$.

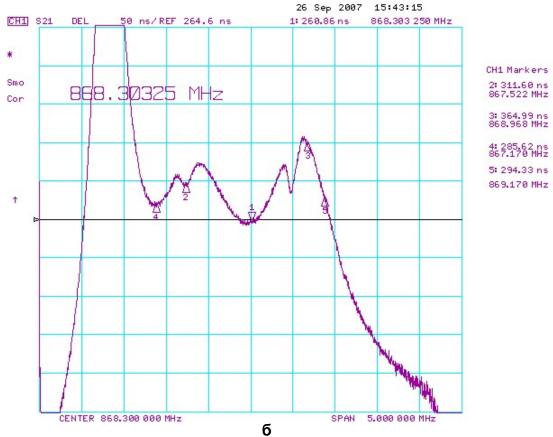

2.2 Вход: (2); выход: (6).

2.3. Особенности монтажа

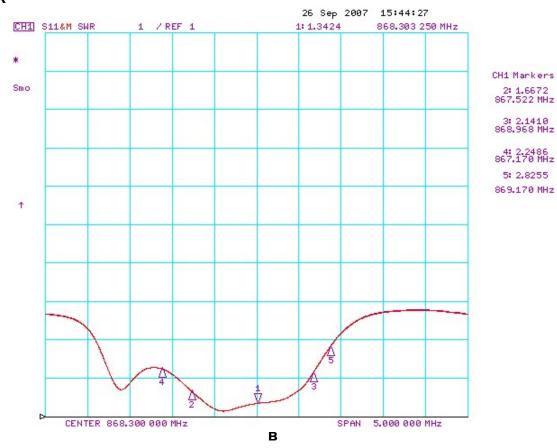
Конкретные номиналы LC-элементов согласующих цепей зависят от паразитных емкостей и индуктивностей в измерительном устройстве Поставщика или в печатной плате аппаратуры Заказчика. Дискретные значения номиналов элементов цепей подбираются при регулировке фильтра в аппаратуре Заказчика.

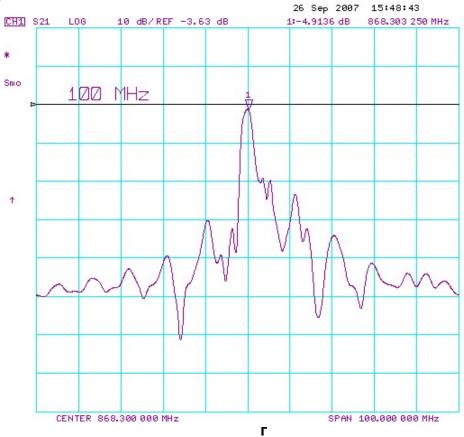

2.4. Гарантированное затухание в широком интервале частот определяется не только избирательностью фильтра на ПАВ, но и электромагнитной наводкой со входа на выход в печатной плате потребителя. Поэтому топология печатной платы должна обеспечивать уровень электромагнитной наводки не хуже -(65-70) дБ.

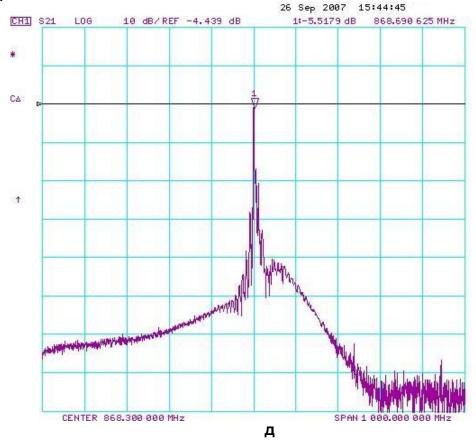
2.5. Рекомендуемая топология контактных площадок печатной платы



3. Измеренные частотные характеристики фильтра ФП-715 868,3В1,2 МГц




GDT, nsec



SWR

|S21|, dB

Измеренные частотные характеристики фильтра ФП-715 868,3В1,2 МГц:

а - |S21| в полосе пропускания ($F_0 = 868,3$ МГц; IL = 3,63 дБ; BW1 = 1,4 МГц; BW3 = 2,0 МГц; неравномерность AЧX AR= 0,3 дБ в полосе Fo+/-0,3 МГц);

б – ГВЗ в полосе пропускания (неравномерность GDV = 75 нс в полосе Fo+/-0,3 МГц);

в – КСВН в полосе пропускания (SWR = 1.8 в полосе Fo+/-0.3 МГц):

 Γ - |S21| в полосе частот 818,3 — 918,3 МГц (BW30 = 6,1 МГц);

д- |S21| в полосе частот 368,5 – 1368,5 МГц (UR=40-60 дБ).

Режим: 50/50 Ом с цепями согласования L1C1+L2C2 в прижимном контактном

устройстве.

Корпус: SMD 5,0 x 5,0 x 1,7 мм.

Обозначения:

AR - неравномерность амплитуды в полосе пропускания;

ВW1 - полоса пропускания по уровню - 1 дБ; ВW3 - полоса пропускания по уровню - 3 дБ; вW30 - полоса пропускания по уровню - 30 дБ;

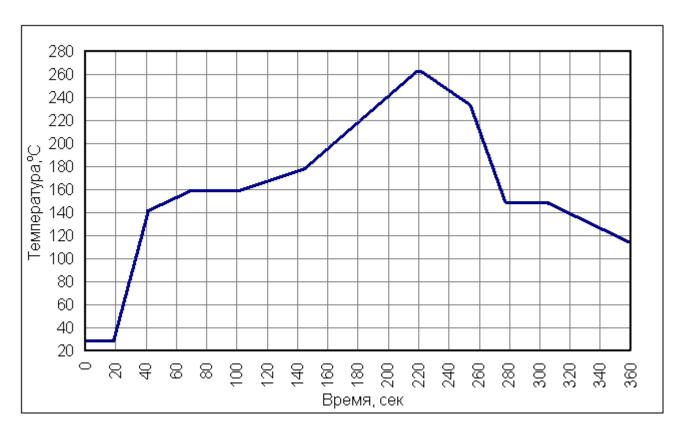
F₀ - номинальная частота;

GDV - неравномерность ГВЗ в полосе пропускания;

IL - вносимые потери;

SWR - коэффициент стоячей волны в полосе пропускания ;

UR - гарантированное затухание.


4 Особенности монтажа

- **4.1** При хранении , монтаже и эксплуатации изделия необходимо предпринять меры по защите от **статического электричества**. Ручную пайку следует выполнять с браслетом, заземленным через сопротивление 1 МОм.
- 4.2 Изделие выполнено на пироэлектрическом материале.

Допустимая скорость охлаждения и нагрева изделия **при хранении и эксплуатации** должна быть не более 60°C в минуту.

При ручном монтаже изделие следует сначала подогреть до температуры 120-140 0 C в течение 2,0-2,5 минут. Далее следует разогреть изделие до температуры плавления припоя 230-240 0 C с допустимой скоростью не более 70 $^{\circ}$ C в минуту. Время пайки при максимально допустимой температуре 240 0 C — не более 5 сек. Перерывы между пайкой контактных площадок корпуса - не менее 10 секунд. Максимальная температура жала паяльника — не более 290-300 0 C.

4.3 Рекомендуемый температурный режим при автоматизированной пайке

Все температуры относятся к верхней части корпуса и измеряются на крышке корпуса.